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In a recent article Kengne and Liu �Phys. Rev. E 73, 026603 �2006�� have presented a number of exact
elliptic solutions for a derivative nonlinear Schrödinger equation. It is the aim of this Comment to point out
that all these solutions given in Secs. II and III of this article �referred to as KL in the following� are subcases
of the general solution of Eq. �KL.9�. Conditions for the parameters A-E of the solutions given by Kengne and
Liu can be found from general conditions for solitary and periodic elliptic solutions as shown in the following.
Positive and bounded solutions can be found by considering the phase diagram. Therefore, the comment of
Kengne and Liu that “we find its particular positive bounded solutions” can be specified.
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Equation �9� in Ref. �1� can be rewritten as

�d��z�
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= ��4 + 4��3 + 6��2 + 4�� + � � R��� , �1�

with �=E, �=D /4, �=C /6, �=K2 /4, and �=−4K1
2 / P2. As is �well� known the general solution of Eq. �1� reads �2–4�

��z� = �0 +

�R��0�
d��z;g2,g3�

dz
+

1

2
R���0�	��z;g2,g3� −

1

24
R���0�
 +

1

24
R��0�R���0�

2	��z;g2,g3� −
1

24
R���0�
2

−
1

48
R��0�R����0�

, �2�

where the primes denote differentiation with respect to � and
�0 is any constant, not necessarily a real root of R���. If there
exists a simple root �0 of R���, Eq. �2� can be simplified to
�2,5�

��z� = �0 +
R���0�

4	��z;g2,g3� −
1

24
R���0�
 . �3�

The invariants g2 ,g3 of Weierstrass’ elliptic function
��z ;g2 ,g3� are related to the coefficients of R�f� by �6�

g2 = �� − 4�� + 3�2, �4�

g3 = ��� + 2��� − ��2 − �3 − ��2. �5�

The discriminant �of � and R �6��

� = g2
3 − 27g3

2, �6�

is suitable to classify the behavior of ��z�. The conditions

� � 0 or � = 0, g2 � 0, g3 � 0 �7�

lead to periodic solutions �7�, whereas the conditions �7,8�

� = 0, g2 	 0, g3 
 0 �8�

are associated with solitary wave like solutions. Physical so-
lutions ��z� must be real and bounded. Considering the phase
diagram ��, R���� �2� one obtains conditions, expressed in
terms of the coefficients of Eq. �1�, that determine physical
solutions. Because �=a2 and a is supposed to be real �1, p. 1�
one has the additional condition that �	0. Therefore, it can
be decided whether a solution a is real and bounded. These
conditions have been denoted as PDC �“phase diagram con-
ditions”� �2�.

If �=0, ��z ;g2 ,g3� can be expressed by hyperbolic, trigo-
nometric, rational functions, respectively �8�. Thus Eq. �3�
reads
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��z� = �0 +
6R���0�z2

24 − R���0�z2 , g2 = g3 = 0, R���0� � 0,

�9c�

where e1= �1/2��3−g3 in Eq. �9a�, e1= �1/2��3g3 in Eq. �9b�,
and �0 is a simple root of R���.

Examples A and B in Sec. KL.II are subcases of Eq. �9a�.
The conditions for the parameters of Eq. �KL.9� follow from
conditions �8� for real roots of R��� due to the PDC. Further-
more the elliptic solutions in Sec. KL.III can be obtained
from Eqs. �3� and �9a� �solutions resulting from Eqs. �9b�
and �9c� are not contained in KL.III�. They are—of course—
special cases of the general solution �2� or �3� that can be
expressed in terms of the Jacobian elliptic functions instead

of the Weierstrass’ function. If ��0 Weierstrass’ function �
can be expressed as �8�

��z� = e3 +
e1 − e3

sn2��e1 − e3z,m�
, �10�

where m= �e2−e3� / �e1−e3� and e1	e2	e3 are the roots of
the equation

4s3 − g2s − g3 = 0. �11�

If ��0 Weierstrass’ function � can be expressed as �8�

��z� = e2 + H2
1 + cn�2z�H2,m�
1 − cn�2z�H2,m�

, �12�

where m=1/2−3e2 /4H2 and H2
2=3e2

2−g2 /4. For instance,
substitution of Eq. �10� into Eq. �3� yields �5�
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. �13�

Choosing the simple root �0 such that

− ��0
2 − 2��0 + 2e3 − � = 0 �14�

and using well known relations between the squares of Jaco-
bian elliptic functions �cf. �9�� yields solutions of types given
in Eqs. �KL.15�, �KL.16�, and �KL.22�. Explicit solutions
resulting from Eqs. �13� and �14� have been deduced in
�5�, Eq. �15�.

Additional solutions not contained in �1� can be obtained
straightforwardly by using the above method. For example,
if �=�=0 �E=K1=0 in �1��, the roots of Eq. �1� read

�1 = 0, �2,3 =
− 3� � �9�2 − 16��

4�
. �15�

If ���0, ��0 the roots �1 and �2 are suitable according
to PDC �2� and
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1
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2
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are the roots of Eq. �11�. Inserting �0=�2 into Eq. �13� and
using the well known relations �9�

dn2�z,m� + m sn2�z,m� = 1, �17�

sn2�z,m� + cn2�z,m� = 1, �18�

dn2�z,m� − m cn2�z,m� = 1 − m �19�

yields the periodic solution
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Solutions of this type are not considered in �1�.

FIG. 1. Kink solitary wave like solution �cf. Eq. �23�� for
�=1, �=−1, and v=1/2.
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Solving �=0 subject to ��0, ��0, and the PDC, yields
various possibilities. One is given by �=2�2 /3�, �=�=0
�E�0, D�0, C=D2 /4E, K1=K2=0 in Ref. �1��. According
to Eqs. �4�–�6� and conditions �8� a solitary solution is given
by this choice of parameters. Because Eq. �1� has two double
roots �1,2=0, �3,4=−2� /�, Eq. �2� instead of Eq. �3� has
to be used to evaluate this solitary solution. Inserting
�0=−� /� into Eq. �2� and using the relation �8�

��z� = e1 +
3e1

sinh2��3e1z�
,

g2 � 0, g3 � 0, � = 0, �21�

leads to the kink solitary solution

��z� = −
�

�
	1 + tanh� �

��
z�
 , �22�

The setting u�x , t�=a�x , t�exp�i��x , t��, a2=�, z=x−vt in
Ref. �1� yields

u�x,t� =�−
�

��1 + tanh� �

��

�x − vt��� . �23�

This solution is shown in Fig. 1 for �=1, �=−1, and v
=1/2. It should be mentioned that a kink solitary wave so-
lution � is not given in �1�.

It is the purpose of this comment to point out that all
solutions presented in �1� are particular cases of the general
solution �2� that can be evaluated simply by the PDC. Sub-
ject to ansatz �KL.3� Eq. �2� represents all elliptic solutions
of the DNSE, since Eq. �1� is solved uniquely by ��z� ac-
cording to Eq. �2�. In conclusion, the trial function approach
to solving Eq. �KL.9� seems to be ad hoc and does not yield
the complete set of elliptic solutions of the DNSE.
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